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Abstract
& Key message This review highlights some of the discov-
eries and applications made possible by “omics” technol-
ogies over the last 10 years and provides perspectives for
pioneering research to increase our understanding of tree
biology.
& Context A decade after the first forest tree genome sequence
was released into the public domain, the rapidly evolving

genomics and bioinformatics toolbox has advanced our un-
derstanding of the structure, functioning, and evolution of
forest tree genomes.
& Aims and methods This review highlights some of the dis-
coveries and applications that “omics” technologies have
made possible for forest trees over the past 10 years.
& Results In this review, we start by our current understanding
of genome evolution and intricacies of gene regulation for
reproduction, development, and responses to biotic and abiot-
ic stresses. We then skim over advances in interactome anal-
ysis and epigenomics, the knowledge of the extent of genetic
variation within and between species, revealing micro- and
macro-evolutionary processes and species history, together
with the complex architecture of quantitative traits. We finally
end with applications in genetic resource conservation and
breeding.
& Conclusion The knowledge gained through the use of these
technologies has a huge potential impact for adapting forests
to the main challenges they will have to face: changing de-
mand from ecosystem services with potentially conflicting
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strategies in terms of conservation and use, as well as climate
changes and associated threats. Genomics will undoubtedly
play a major role over the next decade and beyond, not only
to further understand the mechanisms underlying adaptation
and evolution but also to develop and implement innovative
management and policy actions to preserve the adaptability of
natural forests and intensively managed plantations.

Keywords Genomics .Forest trees .Developmentalbiology .

Epigenetics . Interactome .Micro-evolution . Breeding and
conservation

1 Introduction

Forest system currently faces a number of major challenges,
including increases in the demand for wood, pressure to con-
serve forest areas, and global climate change and associated
threats. The adaptation of these systems in response to these
challenges will require a multifaceted approach, in which ge-
nomic sciences have an important role to play. The aim is to
apply a series of technologies from the fields of genetics,
molecular and cell biology fostered by bioinformatics, and
robotics to analyses of the structure, function, and evolution

of sets of genes, right up to complete genomes, with the use of
high-throughput methods. These methods include the struc-
tural characterization of entire genomes, genes, mRNA, and
proteins, the genome mapping and sequencing (genomics),
the study of mRNA, proteins, and metabolite abundances
across different environmental conditions and/or developmen-
tal stages (functional genomics, i.e., transcriptomics, proteo-
mics, metabolomics), the analysis of epigenetic modifications
(epigenomics), the inference of evolutionary mechanisms
(comparative and population genomics related to macro- and
micro-evolutionary processes, respectively), and the study of
complex biological systems (community genomics,
metagenomics). Since the publication of the first tree genome
sequence (black cottonwood, Tuskan et al. 2006), technolo-
gies and genetic resources facilitating research into forest tree
genomics have advanced our understanding of the tree growth
and development (resulting in large and long-lived organ-
isms), the responses of trees to intrinsic (ontogenic phase
change) and extrinsic (biotic and abiotic) factors, the remark-
able buffering capacity (plasticity) of trees, enabling them to
cope with chronic stresses and extreme events, the molecular
basis of genetic variation within and between species, and the
way in which this variation has been shaped by evolutionary
forces and its relationship to phenotypic variation and adapta-
tion. The objective of this review, which is not intended to be

Valérie Legué
valerie.LEGUE@univ-bpclermont.fr

Marie-Anne Lelu-Walter
Marie-anne.Lelu-Walter@orleans.inra.fr

Jean-Charles Leplé
Jean-Charles.Leple@orleans.inra.fr

Stéphane Maury
stephane.maury@univ-orleans.fr

Alexandre Morel
morel.alx@gmail.com

Sylvie Oddou-Muratorio
sylvie.muratorio@avignon.inra.fr

Gilles Pilate
Gilles.Pilate@orleans.inra.fr

Léopoldo Sanchez
Leopoldo.Sanchez@orleans.inra.fr

Ivan Scotti
Ivan.Scotti@paca.inra.fr

Caroline Scotti-Saintagne
Caroline.Scotti@paca.inra.fr

Vincent Segura
vincent.segura@orleans.inra.fr

Jean-François Trontin
Jean-Francois.TRONTIN@fcba.fr

Corinne Vacher
corinne.vacher@pierroton.inra.fr

1 INRA, UMR1202 BIOGECO, 33612 Cestas, France
2 University of Bordeaux, BIOGECO, UMR 1202,

33615 Pessac, France
3 INRA, UR0588 AGPF, Amélioration, Génétique et Physiologie

Forestières, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon,
45075 Cedex 2, Orléans, France

4 INRA, UMR Ecologie et Ecophysiologie Forestière,
25420 Champenoux, France

5 UMR Ecologie et Ecophysiologie Forestière, Université de Lorraine,
BP 239, 54506 Vandoeuvre, France

6 INRA, IAM, UMR 1136, 54280 Champenoux, France
7 INRA, UR629, URFM, Ecologie des Forêts Méditerranéennes,

Domaine St Paul, 84914 Avignon, France
8 INIA Forest Research Centre, Carretera de A Coruña km 7.5,

28040 Madrid, Spain

9 USC 1328 INRA, Laboratoire de Biologie des Ligneux et des
Grandes Cultures, University of Orléans EA 1207,
45067 Orléans, France

10 Clermont Université, Université Blaise-Pascal, UMR 547 PIAF, BP
10448, 63000 Clermont-Ferrand, France

11 INRA, UMR 547 PIAF, 63100 Clermont-Ferrand, France
12 FCBA, Pôle Biotechnologies et Sylviculture avancée,

71 route d’Arcachon, 33610
Cestas, France

78 C. Plomion et al.

Author's personal copy



exhaustive, is to outline the tremendous progress achieved in
forest tree genomics over the last 10 years. This progress is
illustrated by considering a series of 10 achievements. We will
begin by skimming over the knowledge acquired from the
sequencing of forest tree genomes. We will then move on to
the key developmental traits underlying the biology of woody
perennials, the molecular mechanisms driving the responses
of trees to biotic and abiotic stresses, and we will tackle two
emerging fields (molecular interactions, epigenetics) that
promise to improve our understanding of the functioning of
tree genomes considerably. Finally, we consider the knowl-
edge gained from the description and interpretation of natural-
ly occurring genetic variation within and between species.
This knowledge has provided us with an understanding of
the contemporary and historical evolutionary processes that
have contributed to the observed patterns of geographic and
phenotypic variation and the molecular basis of quantitative
trait variation. We will conclude by considering the potential
impact of genomic studies on the conservation and improve-
ment of forest tree genetic resources. This review is accessible
to readers from diverse backgrounds keen to acquire a basic
understanding of the opportunities for tacking the complex
issues facing the world’s forests provided by this discipline.
A glossary of terms for readers that are not necessarily familiar
with genomics or other specialized jargon was added as elec-
tronic supplemental material (ESM_1.doc).

2 Accomplishments in forest tree genomics

2.1 What have we learnt from the sequencing of tree
genomes?

Over the last 10 years, forest tree genomics has benefited
considerably from advances in next-generation sequencing
technologies, making it possible to investigate the role of hun-
dreds of genes, to access sequence-basedmarkers for breeding
at the genome scale, and to study the evolutionary history of
tree species (Neale and Kremer 2011). Even if the sequencing
of forest tree genomes lags far behind that of fruit trees and
annual crops (http://en.wikipedia.org/wiki/List_of_
sequenced_plant_genomes), more than 20 tree genome
sequencing projects are currently underway (Neale et al.
2013), and six completed forest tree genomes have yet been
released and published. In 2002, the US Department of
Energy (DOE, USA) set up an international initiative to
sequence the Populus trichocarpa genome, the first tree
genome (Tuskan et al. 2006) and only the third plant genome,
after Arabidopsis thaliana, the model dicot for plant biology
(Arabidopsis Genome Initiative 2000), and rice, the major
economic crop that became a model monocot (Goff et al.
2002; Yu et al. 2002; IRGSP 2005). An additional poplar
species has since been sequenced, Populus euphratica (Ma

et al. 2013), together with a second angiosperm tree species,
Eucalyptus (Myburg et al. 2014), and three conifers, Norway
spruce (Nystedt et al. 2013), white spruce (Birol et al. 2013),
and loblolly pine (Neale et al. 2014; Zimin et al. 2014). In the
first section of this review, we will briefly summarize the new
findings obtained by exploring these first forest tree genomes,
in terms of specific aspects of tree biology, such as
angiosperm/gymnosperm wood formation and life history
traits.

The Populus genome sequence provided the first insight
into the genome structure and functional biology of a specific
tree. The poplar genome is about four times larger than that of
Arabidopsis. This larger size results mostly from a complex
history of whole-genome duplications, chromosomal rear-
rangements, and tandem duplications, as shown by Tuskan
et al. (2006). The poplar genome contains 1.6 times as many
genes as the Arabidopsis genome, and the expansion of sev-
eral gene families associated with tree-specific traits may also
have contributed to the evolution of tree biology. The annual
formation of wood is just one of a number of processes exclu-
sive to trees (Plomion et al. 2001). Several genes associated
with cellulose or lignin biosynthesis were found to occur in
duplicated pairs in Populus, whereas only single copies were
present in Arabidopsis. For example, the oxidative polymeri-
zation of monolignols, the precursors of lignins, involves two
different, non-redundant types of oxidative enzymes—
laccases and peroxidases—as recently demonstrated for
Arabidopsis vascular development (Zhao et al. 2013a). The
laccase gene family of Populus is much larger than that of
Arabidopsis (51 versus 17 genes, respectively; Berthet et al.
2012). Moreover, phylogenetic and expression studies of the-
se two multigene families showed that the 16 orthologs of the
three Arabidopsis lignin-related laccases (AtLAC4,
AtLAC11, and AtLAC17) present in poplar were expressed
mostly in the stem xylem, but with some exceptions (expres-
sion in the root or other organs), suggesting a conservation of
function, but with subfunctionalization for some duplicated
poplar genes.

If we take a closer look at the process of wood formation,
we find that secondary xylem development evolved between
gymnosperms and angiosperms. One of the two main differ-
ences between these two groups is the lack of S units in coni-
fer lignins. All the genes involved in monolignol biosynthesis
in angiosperms were identified in the pine genome, except for
the F5H homolog, which is crucial for the biosynthesis of S
units in plants (Bonawitz and Chapple 2010, for review; Neale
et al. 2014). The second difference concerns water transport
and mechanical support functions, both of which are mediated
principally by tracheids in conifers, whereas angiosperms
have fibers for mechanical support and vessels for water trans-
port. The number of genes encoding vascular-related NAC
domain transcription factors, key regulators of xylem vessel
differentiation in angiosperms, is much smaller (only two
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genes identified) in Norway spruce (Nystedt et al. 2013) than
in Arabidopsis and poplar, in which 7 and 16 such genes,
respectively, have been identified (Ohtani et al. 2011) suggest-
ing a possible expansion and subfunctionalization of the NAC
domain transcription factor family in angiosperms, particular-
ly in woody angiosperms.

Unlike annual plants, which have a short lifespan, trees
have had to develop long-term defense strategies against in-
sects and pathogens. Interestingly, although the total number
of NBS-LRR pathogen resistance genes is similar in
Arabidopsis and poplar, some subfamilies are considerably
larger in Populus (Tuskan et al. 2006; Kohler et al. 2008;
Bresson et al. 2011). Interestingly, the TIR class of NB-LRR
proteins (TNLs) is also much larger in conifers (780 genes in
loblolly pine and 180 genes in Norway spruce) than in
Arabidopsis (3 genes).

In addition to revealing functional differences between ge-
nomes, these recent works have increased our understanding
of the life histories of angiosperm/gymnosperm trees.
Populus, like Eucalyptus and grapevine, has undergone at
least one whole-genome duplication (WGD) event. Analysis
of the Populus genome led to the identification of three sepa-
rate WGD events. The most recent burst of gene creation
happened 60 to 65 million years (Myr) ago, due to a single
whole-genome event. A second duplication, in a common
ancestor of Populus (Fabid, also known as eurosid I) and
Arabidopsis (Malvid, also known as eurosid II), was found
to have occurred about 100 to 120 Myr ago. Aweaker signal
was also found for a third, more ancient duplication event, but
this event was not dated by the authors (it probably corre-
sponds to the palaeohexaploidy event, see below). A compar-
ison of the estimated molecular clocks of Populus and
Arabidopsis revealed a markedly slower rate of sequence evo-
lution in Populus, possibly due to its perennial status, leading
to recurrent contributions of “ancient gametes” from old indi-
viduals (Tuskan et al. 2006). An analysis of the recently se-
quenced Eucalyptus genome and phylogenetic studies based
on 17 species have suggested that Populus should be
reclassified as a Malvid and that Eucalyptus should be placed
in a sister taxon to the eurosids (Myburg et al. 2014). A study
of the evolutionary history of the Eucalyptus genome also
revealed the ancient palaeohexaploidy event (∼130 to
150 Myr), which has also been discovered in grapevine and
is common to all eudicots (Jaillon et al. 2007). This event has
also been shown to be superimposed over a more recent
lineage-specific palaeotetraploidy event (∼110 Myr). WGD
is an important mechanism of genome size expansion. As
conifers have genomes about 20 to 30 times larger than those
of angiosperms, it was intriguing that no evidence for such a
mechanismwas found in Norway spruce (Nystedt et al. 2013);
only the trace of a very ancientWGD predating the divergence
of angiosperms and gymnosperms was detected by the authors
(∼350 Myr), consistent with previous phylogenetic analysis

(Jiao et al. 2011). Instead, it appears that conifer genomes
grew mostly through the insertion of repeated elements, prin-
cipally long terminal repeat-retrotransposons (LTR-RT; essen-
tially the Ty3/Gypsy and Ty1/Copia superfamilies) (Nystedt
et al. 2013). The authors proposed a model for genome evo-
lution in conifers (six conifer species were investigated), in
which retrotransposon activity began early in evolution and
was not countered as efficiently as in angiosperms, resulting in
larger gene/pseudogene numbers, and numerous long introns,
with genes separated by large regions of transposable element-
rich, highly polymorphic DNA in conifers but with the main-
tenance of synteny over large phylogenetic distances.

2.2 Developmental genomics

As reported in Section 2.1, the development of genomics-
enabled research has been instrumental in the identification
of genes underlying the traits characteristic of the biology of
woody perennials. In this section, we review the progress
made by the forest tree genomics community towards eluci-
dating wood formation, bud dormancy, root development in
interaction with microbial symbionts, and embryo develop-
ment in conifers.

2.2.1 Wood formation

Wood or secondary xylem formation results from cambium
activity. The secondary xylem fulfills highly specialized func-
tions critical for tree growth and development, such as water
conduction from the roots to the crown and mechanical sup-
port. Xylem cells—vessels, fibers, and tracheids—specialize
in one or both of these functions. These cells differentiate,
developing thick and lignified secondary cell walls, before
undergoing programmed cell death. In addition, ray cells gen-
erated by the cambium connect the phloem to the inner wood.
They have storage functions and are also involved in heart-
wood formation. Trees can give rise to different types of
wood—juvenile and mature wood, early and late wood, and
reaction wood—with very different properties, depending on
their stage of development or in response to environmental
cues (Déjardin et al. 2010; Plomion et al. 2001). Wood forma-
tion is, therefore, a highly regulated process, and our under-
standing of which has greatly improved, thanks to advances in
genomics.

Genomic studies of wood formation in angiosperms and
gymnosperms began more than 15 years ago (Allona et al.
1998; Sterky et al. 1998), with comparisons of transcriptomes
and proteomes between different types of wood, leading to the
establishment of correlations between the expression of a
number of specific genes and specific wood characteristics,
such as cell wall composition and properties (Plomion et al.
2000; Déjardin et al. 2004; Gion et al. 2005; Paux et al. 2005;
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Andersson-Gunneras et al. 2006; Qiu et al. 2008; Paiva et al.
2008a, b; Villalobos et al. 2012).

Furthermore, causal links were established through studies
of natural mutants or, more frequently, genetically modified
(GM) plants with modified expression of genes involved in
cell wall component metabolism: mostly for lignin (van
Holme et al. 2013; van Acker et al. 2014) but also for cellulose
(Coleman et al. 2007; Coleman et al. 2009), hemicelluloses
(Park et al. 2004; Baba et al. 2009; Nishikubo et al. 2011;
Zhao et al. 2013b), pectins (Biswal et al. 2014), and other cell
wall proteins, such as expansin (Gray-Mitsumune et al. 2008).
Nowadays, such modified plants would ideally be character-
ized by global omics analyses, leading to the establishment of
relationships between the phenotype and networks of molec-
ular components, and this approach will undoubtedly lead to
the construction of increasingly realistic models explaining
wood formation.

The regulation of wood formation has been investigated in
a number of studies, leading to the identification of transcrip-
tion factors involved in secondary cell wall differentiation:
this is the case, for example, for ARBORKNOX2 and
KNAT7, two Populus homeobox genes (Du et al. 2009; Li
et al. 2012), and for PtrMYB152 (Wang et al. 2014a), PtrHB7,
a class III HD-Zip gene (Zhu et al. 2013b), and FPF1, a gene
also involved in the regulation of flowering (Hoenicka et al.
2012). Likewise, Zhong et al. (2011) demonstrated a key role
of PtrWNDs, wood-associated NAC domain transcription fac-
tors, as master switches regulating a battery of downstream
transcription factors forming a transcriptional network con-
trolling secondary cell wall biosynthesis during wood forma-
tion. As described in Section 2.4, the conjunction of several
complementary techniques, such as xylem protoplast transfec-
tion, RNA-Seq, and ChIP-Seq, has paved the way for the
identification of hierarchical gene regulatory networks direct-
ed bymaster transcription factors in wood formation (Lin et al.
2013).

MicroRNAs (miRNAs) have also been implicated in the
regulation of wood formation. These miRNAs are short non-
coding RNAs with critical regulatory functions. In a
pioneering study, Lu et al. (2005) described a number of
miRNAs regulated in wood in response to tension and com-
pression stresses. The use of next-generation sRNA sequenc-
ing has led to the identification of several miRNAs that are
particularly abundant in the xylem: these miRNAs are predict-
ed to target genes known to be important in secondary growth,
including the critical reaction wood enzyme xyloglucan
endotransglycosylase/hydrolase and vascular system-related
transcription factors (Puzey et al. 2012). Furthermore, trans-
genic poplar trees expressing either a miRNA-resistant
POPCORONA or a syn the t i c miRNA targe t ing
POPCORONA have been used to infer the function of
POPCORONA during secondary growth: the synthetic
miRNA-mediated knockdown of POPCORONA expression

resulted in abnormal lignification in pith cells, whereas the
overexpression of a miRNA-resistant POPCORONA delayed
the lignification of xylem and phloem fibers during secondary
growth. The misexpression of POPCORONAwas also shown
to result in a coordinated change in gene expression within a
previously described transcriptional network regulating cell
differentiation and cell wall biosynthesis and in the expression
of hormone-related genes associated with fiber differentiation
(Du et al. 2011).

In parallel to these important advances in molecular biolo-
gy, progress has also been made towards the high-throughput
phenotyping of cell wall properties. Optimization of the MS-
based sequencing of lignin oligomers (Morreel et al. 2010),
together with the phenol profiling of plants with lignin mod-
ifications, has provided a clear overview of the lignin biosyn-
thesis gene network (vanHolme et al. 2012a, b). Chemometric
analyses of 2D NMR spectra for cell walls have made it pos-
sible to identify changes in cell wall components (Hedenström
et al. 2009). Likewise, in situ images of the different
chemotypes present in poplar cell walls can be obtained by
MicroFTIR analysis (Gorzsás et al. 2011). Finally, a wealth of
information has been generated by the development of cell
wall polymermapping withmicroarrays, using specific mono-
clonal antibodies and cellulose-binding modules (Moller et al.
2007).

The last few years have seen major technical improve-
ments, leading to the generation of huge amounts of data
and opening up new possibilities for network analysis. For
example, text mining, co-expression network analysis, and
comparative genomics are providing an ever-increasing num-
ber of opportunities to identify candidate genes for cell wall
biosynthesis (Yang et al. 2011). A genome-wide metabolic
pathway database was recently created for P. trichocarpawith
pathway analysis tools (Zhang et al. 2010). In the future, a
combination of microdissection and high-throughput analysis
should make it possible to acquire large amounts of data for
increasingly precisely defined samples corresponding to sin-
gle cell types or to very specific developmental steps. Finally,
studies of interactions between molecular components should
greatly advance our understanding of wood formation.

2.2.2 Vegetative bud phenology

Perennial plants are immobile organisms that cannot migrate
to cope with unfavorable winter conditions. They have devel-
oped a strategy for synchronizing their growth and reproduc-
tive phases with the favorable environmental conditions. This
strategy, dormancy, enables trees both to protect themselves
from cold injuries and to ensure an appropriate architecture
(reviewed by Preston and Sandve 2013). The term “dorman-
cy”was defined in 1987 byLang et al. (1987) as a phase during
which growth is temporarily suspended, in any plant structure
containing a meristem (i.e., meristematic cells). In trees,
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dormancy occurs mostly in the buds or vascular cambium and
can be divided into three main phases according to the factors
controlling growth cessation (Chao et al. 2007). The first kind
of dormancy is called paradormancy. During paradormancy,
growth is stopped by physiological factors external to the
affected structure (i.e., apical dominance or correlative inhibi-
tion). Paradormancy is followed by “winter dormancy,”which
is divided into two main stages: endodormancy, the deepest
phase of dormancy (reviewed by Horvath et al. 2003) induced
by a decrease in day length, and ecodormancy, which is im-
posed by unfavorable environmental condit ions.
Endodormancy is maintained by internal factors specific to
the bud itself. Endodormancy generally begins at the end of
the summer and steadily increases in intensity during the fall,
peaking at some time in November, the precise timing of the
peak depending on the species considered (Naor et al. 2003).
Endodormancy is broken when chilling requirements are ful-
filled. Ecodormancy is established at the release of
endodormancy. Ecodormancy occurs during late winter and
early spring and is imposed exclusively by environmental fac-
tors unfavorable for growth (essentially cold temperatures).

Dormancy (i.e., endo- and ecodormancy) is tightly con-
trolled by both photoperiod and temperature. Photoperiod
strongly influences the induction of dormancy, whereas tem-
perature is involved in its release (for both endodormancy and
ecodormancy). Temperature thus plays a major role in the
phenological cycle of these species. Global warming may
strongly affect phenology, because increases in temperatures
may extend the growing seasons of trees (reviewed byMenzel
and Fabian 1999) and prevent endodormancy release if chill-
ing requirements are not fulfilled during early winter. They
may also favor ecodormancy release by accelerating bud cell
growth during late winter and/or early spring. There is there-
fore an urgent need to decipher the mechanisms underpinning
dormancy and to identify the genes/polymorphisms that mat-
ter for adaptation, because these changes may have severe
effects in forest ecosystems, increasing the risk of early frost
damage or of exposure to new pathogens.

Molecular mechanisms involved in dormancy induction
and release remain poorly characterized in forest trees. Gene
expression profiling has been performed in poplar (Rhode
et al. 2007), spruce (Yakovlev et al. 2006), oak (Ueno et al.
2013), peach (Bassett et al. 2006), and apricot (Yamane et al.
2008) and has led to the identification of a set of candidate
genes for dormancy regulation. In peach, Bielenberg et al.
(2008), using the ever-growing mutant, have shown that
MADS box genes were relevant candidate genes for dorman-
cy regulation. Indeed, the ever-growing mutant is character-
ized by continuous growth of its apical meristem and does not
respond to short-day signaling or low temperature. Ruttinkt
et al. (2007) carried out a combination of transcriptome and
metabolome profiling in poplar, to obtain the first molecular
time table of apical bud formation and dormancy induction in

a forest tree species. More recently, Ueno et al. (2013) provid-
ed the first insight into the gene networks involved in endo-
and ecodormancy in European white oaks. They reported that
genes overexpressed during endodormancy were related to
dehydration, high light intensity, and abscisic acid, whereas
those most strongly overexpressed during ecodormancy were
related to metal ion binding, cellular transition, and fatty acid
binding.

2.2.3 Root development

In woody perennial species, the optimal adaptation of root
architecture to the soil is crucial to ensure solid anchorage of
the plant in the soil and the efficient acquisition of water and
nutrients. The mature root system of trees has a typical root
architecture, including primary and lateral roots, resulting
from the integration of multiple environmental signals such
as symbiosis associations and water availability. The need to
integrate signals from multiple pathways, therefore, compli-
cates the dissection of the transduction pathways involved in
root development. Only a few transcript profiling analyses
have been conducted in woody plants, to investigate the
events regulated during root development, and there is still
no transcriptional roadmap. The development of genomic
and transcriptomic tools, such as EST sequencing, microar-
rays, and next-generation sequencing technologies, and their
application to different plant–fungal ectomycorrhizal associa-
tions have resulted in highly valuable information being ob-
tained, including the identification of key genes involved in
root architecture. For example, the research performed on the
poplar/Laccaria bicolor association (Felten et al. 2009) and,
more recently, on the oak/Pisolithus tinctorius association
(Sebastiana et al. 2014) has improved our understanding of
auxin-dependent pathways in roots.

Transcriptome analysis requires the detailed and precise
annotation of sequenced plant genomes and thus provides an
opportunity to identify genes regulated differently in the plant
studied. The genomic sequences of P. trichocarpa (Tuskan
et al. 2006) and, more recently, of E. grandis (Myburg et al.
2014) have been used to identify the members of gene families
and to compare entire gene families between species. For ex-
ample, some studies have reported a lack of expansion in
poplar or in eucalyptus of certain gene families involved in
hormone homeostasis and signal transduction. This is the case
for families encoding cytokinin-related enzymes (Ramírez-
Carvajal et al. 2008) and auxin response factor (ARF) gene
family (Yu et al. 2014). Conversely, genome-wide analysis of
the Populus PIN (auxin efflux transporters) family highlighted
a more diversified expansion of this family in Populus than in
Arabidopsis, indicating a potential role of these transporters in
tree growth and development and, more importantly, in the
development of roots and leaves (Liu et al. 2014).
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Transcriptomic analyses performed at different stages of
adventitious root formation in woody plants have revealed
significant transcriptome remodeling during the formation of
adventitious roots in Pinus taeda (Brinker et al. 2004),
Populus sp. (Ramírez-Carvajal et al. 2009; Rigal et al.
2012), and Eucalyptus grandis (Abu-Abied et al. 2012) and
allowed the identification of key genes involved in these de-
velopmental events. For example, recent studies on several
woody species have generated interesting data, strongly im-
plicating transcription factors in the successive steps of adven-
titious root establishment (reviewed by Legué et al. 2014)
including GRAS (Sanchez et al. 2007) and AP2/ERF families
(Ramírez-Carvajal et al. 2009; Rigal et al. 2012).

We also need to determine the links between changes in
gene expression and alterations of biochemical and physiolog-
ical functions and, ultimately, root development and the way
in which the expression patterns of different genes are inter-
connected. The determination of gene function will require the
construction and production of transgenic tree lines. This will
involve a considerable technical effort on the part of laborato-
ries. Several ambitious projects managed by several teams
have been successfully carried out, providing the scientific
community with a number of lines in which gene expression
has been enhanced or decreased by RNA interference and
gene tagging (Busov et al. 2005, 2010). Studies aiming to
identify genes on the basis of their expression patterns, using
enhancer-trap and gene-trap insertion lines, are also very use-
ful, but fewer studies of this type have been carried out.

The transcriptional findings and integrative databases al-
ready available constitute a fundamental resource for future
studies of molecular events and for the identification of key
proteins involved in developmental processes. In parallel,
transgenic lines are crucial for functional genomics studies
and should be made more readily available to the research
community.

2.2.4 Conifer embryo development

Conifers are the primary source for wood production world-
wide (Canales et al. 2014). By unraveling the complexity of
the regulated gene network involved in conifer embryo devel-
opment, it should be possible to develop genomic and
epigenomic tools for the early selection of improved varieties.
This is a critical issue to face rapid socioeconomic and envi-
ronmental changes. Plant growth can be determined early dur-
ing embryogenesis (Yakovlev et al. 2014). This knowledge is
also required to develop efficient clonal propagation methods
of selected trees, such as somatic embryogenesis
(Klimaszewska et al. 2011). This process has great potential
for the deployment of new varieties in plantation forestry
(Lelu-Walter et al. 2013; Klimaszewska et al. 2015).

It is difficult to sample manageable quantities of embryo-
genic masses during early zygotic embryogenesis (de Vega-

Bartol et al. 2013; Elhiti et al. 2013). As somatic embryos
(SEs) closely mimic zygotic embryos (ZEs) duringmaturation
from early to late embryogenesis, they are considered as a
model in vitro system to study the molecular biology of em-
bryo development in conifers (Vestman et al. 2011; Yakovlev
et al. 2014). Classical genetic approaches for the identification
of embryogenesis-related genes are impracticable in conifers,
due to their long generation time and large genome size. Since
the discovery of somatic embryogenesis 30 years ago
(Hakman et al. 1985; Klimaszewska et al. 2015), our knowl-
edge of regulated genes in this system has thus remained
highly fragmented and mostly based on expression studies
of a few candidate genes (ESM_2A.doc). Current somatic
embryogenesis protocols also essentially resulted from te-
dious “trial and error” strategies with low inputs from molec-
ular studies. Microarray and RNA sequencing methods have
recently provided critical advances for the genome-wide pro-
filing of gene expression. Transcriptomics is developing rap-
idly in conifers, with the recent advent of large genomic re-
sources (Lorenz et al. 2012; Raherison et al. 2012; Canales
et al. 2014), including draft genomes for Picea (Birol et al.
2013; Nystedt et al. 2013) and Pinus (Neale et al. 2014).

Transcriptomic profiling is generating a growing body of
information about coordinated gene expression during conifer
embryo development (ESM_2B.doc, reviewed in Trontin et al.
2015). The number of transcribed genes appears to be 30 to
40 % larger than in any other tissue (Cairney and Pullman
2007; Yakovlev et al. 2014) with high relevance to the gene
network in A. thaliana (300–450 genes, Cairney and Pullman
2007; Zhang et al. 2012a). Transcript profiles during zygotic
embryogenesis are highly correlated between Pinus pinaster
and A. thaliana, with only 3 % of the transcripts estimated to
be gymnosperm-specific (de Vega-Bartol et al. 2013). Differ-
ences between angiosperms and gymnosperms are thought to
arise principally from spatiotemporal variations in gene expres-
sion resulting partly from epigenetic modifications, which may
act as an adaptive mechanism in such long-lived species
(Cairney and Pullman 2007; Vestman et al. 2011; de Vega-
Bartol et al. 2013). Yakovlev et al. (2014) specifically reported
temperature-dependent differential transcriptomes in Picea
abies embryogenic masses potentially associated with the for-
mation of an epigenetic memory, with a delayed, persistent
impact on seedling growth. Zhang et al. (2012b) also demon-
strated the widespread occurrence of microRNAs in Larix
kaempferi embryogenic masses, with predicted target genes
involved in SE development. Transcriptome profiling con-
firmed that important processes are conserved in higher plants,
including the apical–basal embryo patterning driven by polar
auxin transport and the activation of the auxin-mediated re-
sponse machinery during radial embryo patterning (Vestman
et al. 2011; de Vega-Bartol et al. 2013). Transcriptomics has
also highlighted the complexity of the processes and genes
involved in the spatiotemporal development of conifer embryos
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from embryogenic induction (Elhiti et al. 2013; Rutledge et al.
2013) to the switch from embryonic phase to vegetative growth
(Stasolla et al. 2003, 2004; Vestman et al. 2011; Morel et al.
2014a). An impressive picture of coordinated functions and
genes has been obtained for SE maturation in P. abies
(Stasolla et al. 2003, 2004; Vestman et al. 2011) and ZE forma-
tion in P. pinaster (de Vega-Bartol et al. 2013). It should be
possible to model embryo development, by interpreting and
integrating the large transcript, protein, and metabolite datasets
(Kell et al. 2005; Vanderschuren et al. 2013; Wolfender et al.
2013). However, proteomic and metabolomic studies are cur-
rently scarce for conifers (ESM_2B.doc, reviewed in Trontin
et al. 2015). There are still many limitations, at both experimen-
tal (Abril et al. 2011) and interpretational levels (Lippert et al.
2005; Saghatelian and Cravatt 2005; Teyssier et al. 2011,
2014). A recent study of embryo development in P. pinaster
demonstrated the applicability of integrated approaches for the
production of robust data (Morel et al. 2014a).

“Omics” approaches could offer practical offshoots, such
as diagnostic tools for checking embryogenic potential or em-
bryo quality. Various miRNAs with stage-specific expression
have been described in L. kaempferi, suggesting possible
modulation of embryogenic potential (Zhang et al. 2012b; Li
et al. 2014a). The metabolic signature has been shown to
accurately predict embryogenic potential in P. taeda (Robin-
son et al. 2009). Transcriptomics in P. taeda (Pullman et al.
2003) and proteomics in P. pinaster (Morel et al. 2014b) have
provided strong evidence of differences between SEs and fully
mature ZEs. Transcriptomics has also proved to be of practical
value in Picea glauca to check SE quality in different matu-
ration conditions (Stasolla et al. 2003). The transcriptomic and
proteomic profiling of early maturing SEs in P. pinaster has
also yielded robust diagnostic tools for detecting disturbances
in pathways critical for normal embryo development
(ESM_2C.doc, Morel et al. 2014a).

2.3 Molecular mechanisms involved in biotic and abiotic
stress responses

We illustrate in this section how genomic technologies have
not only improved our understanding of the structure and evo-
lution of forest tree genomes but have also provided a suitable
platform for obtaining knowledge about the molecular mech-
anisms involved in responses to biotic and abiotic cues. Con-
sidering that trees are not standing by themselves, we also
considered in this section emerging researches aiming at
drawing a holistic picture of the interactions between forest
trees and their microbiome.

2.3.1 Abiotic stresses

Abiotic stresses decrease the growth and productivity of crops
and forests. The physiological mechanisms of acclimation to

environmental stresses have been extensively studied, but the
analysis of their molecular bases started more recently (a de-
cade ago in forest trees). Understanding these molecular
mechanisms is of particular relevance in the frame of climate
change, to achieve more rapid genetic gains in abiotic stress
resistance by molecular breeding. As pointed out by Dubos
et al. (2003), the molecular mechanisms involved in stress
responses in trees, which have a long life cycle and specific
tissues, should be considered separately and in addition to
those of crops and model plants. Over the last 10 years, the
number of studies analyzing the molecular basis of the re-
sponse/acclimation/adaptation of trees to abiotic stresses has
increased steadily. The release of the P. trichocarpa genome
(Tuskan et al. 2006) led to poplar becoming the model tree
species for functional genomics. About three quarters of
“omics” publications concerning the response of trees to abi-
otic stresses concern a wide range of species from the genus
Populus (ESM_3.xls). The remaining studies concern euca-
lyptus, pine, and, to a lesser extent, oak, beech, and Douglas
fir. The context of global changemay account for water deficit
being the stress most frequently studied in functional geno-
mics. Salinity, high atmospheric CO2 concentration, hypoxia,
heat, cold, ozone, nitrogen deprivation, and metal toxicity
have also been studied, to a lesser extent.

Comparative approaches have been widely used through
“omics” or quantitative trait locus (QTL) approaches. The
genotype specificity of transcriptomic, proteomic, or
metabolomic responses has been highlighted bymany studies.
Comparing six genotypes of Populus balsamifera, Hamanishi
et al. (2010) showed that the growth response to drought was
correlated with genetic responsiveness. InP. deltoides × nigra,
the phenotypic response to moderate drought was found to be
very similar for a stress-tolerant and a stress-sensitive geno-
type, and the differences in transcriptional responses were
therefore attributed to intrinsic divergences in genome func-
tioning (Cohen et al. 2010). In a similar study on Eucalyptus,
the drought-tolerant hybrid displayed changes in the expres-
sion of a broader set of genes in response to water deficit, and
the stress signaling cascade differed between the two geno-
types studied (Villar et al. 2011). Similar genotype × environ-
ment interactions have been reported for proteomic studies
(Bonhomme et al. 2009; Xiao et al. 2009; Bedon et al.
2012). The results obtained in a field experiment suggested
that the better maintenance of productivity during the dry sea-
son by a drought-tolerant Eucalyptus genotype involved cell
wall modification, ROS detoxification, and osmoregulation
(Bedon et al. 2012). A comparison of the metabolomes of
two Eucalyptus species showed that many low-abundance
compounds may help plants to cope with water stress through
non-osmotic functions (Warren et al. 2012). Comparisons of
the transcriptomes and metabolomes of mature unstressed
leaves from P. euphratica (salt-tolerant) and Populus
canescens (salt-sensitive) suggested that the evolutionary
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adaptation of P. euphratica to saline environments involved
the permanent activation of control mechanisms for osmotic
adjustment, ion compartmentalization, and the detoxification
of reactive oxygen species (Janz et al. 2010). Other molecular
players and networks involved in acclimation to abiotic stress-
es are detailed in a recent review by Harfouche et al. (2014).

Few studies have investigated the effects of releasing an
environmental stress. In P. euphratica, full re-irrigation after
water deficit was found to lead to the recovery of most phe-
notypic traits and the reversal of transcriptional changes
(Bogeat-Triboulot et al. 2007). In a similar experiment on
oak, recovery following re-irrigation occurred in two steps,
in which the observed transcriptional remodeling was consis-
tent with physiology and growth (Spiess et al. 2012).

Other studies have provided interesting information about
less studied abiotic stresses. Large differences were found
between poplar and Arabidopsis, which is flood-sensitive, in
terms of metabolite and transcript patterns in response to hyp-
oxia, accounting for the ability of poplar to maintain its carbon
and energy metabolism and, thus, its flood tolerance
(Kreuzwieser et al. 2009). A QTL analysis associated with a
study of transcriptional responses to ozone showed the in-
volvement of key genes relating to ethylene production and
response (Street et al. 2011). As for model plants, most mo-
lecular studies of the response of trees to abiotic stresses have
been conducted on leaf material (ESM_3.xls). Those compar-
ing transcriptomic or proteomic changes in different organs
have highlighted the tissue specificity of the response
(Bogeat-Triboulot et al. 2007; Cohen et al. 2013; Bedon
et al. 2012). The proteins and genes identified are potential
markers and targets for molecular breeding, but the diverse
requirements for protecting and maintaining the function of
different plant organs may render the engineering of stress
tolerance in plants more difficult (Polle et al. 2006).

More attention should be paid to the molecular aspects of
wood response, including xylem hydraulic adaptation to salt
stress (Janz et al. 2012), drought and embolism (Berta et al.
2010; Secchi et al. 2011), and cadmium accumulation in bark
and phytoremediation (He et al. 2013). Greenhouse and labo-
ratory experiments are useful as they allow the control of
environmental conditions, but field studies remain exception,
despite their high value, and this approach should be devel-
oped further (Villar et al. 2011; Pandey et al. 2013). In addi-
tion to transcriptomic, proteomic, and metabolomic changes,
epigenetic responses and non-coding microRNAs contribute
to acclimation or adaptation to abiotic stresses. There is cur-
rently a lack of studies in this area (see Section 2.5), and
further research is required (Harfouche et al. 2014). More
integrated research will be necessary, if we are to unravel the
complex molecular mechanisms and pathways underlying re-
sponses to abiotic stresses (Castell and Ernst 2012; Harfouche
et al. 2014). The release of additional completed tree genome
sequences (Myburg et al. 2014; Zimin et al. 2014) and next-

generation sequencing should expand the range of research
and help us to decipher the molecular mechanisms underlying
the response of forest trees to abiotic stresses.

2.3.2 Biotic stresses

Several disturbances to natural forest ecosystems and forest
plantations due to outbreaks of insect or pathogens have had
major impacts, at the regional scale, on timber production or
tree population sustainability (Sturrock et al. 2011). With cur-
rent predictions of climate change, tree populations may be-
come even more susceptible to outbreaks of existing and new
pests and diseases. Structural and functional genomic ap-
proaches in forest trees have revealed a large diversity in ge-
netic control of induced responses in the host and the com-
plexity of molecular communications between the two part-
ners (Duplessis et al. 2009) which both contrast with the Flor’s
gene-for-gene model.

Like many other plants, forest trees have evolved two strat-
egies for recognizing microorganisms including pathogens,
symbionts, and endophytes (Guttman et al. 2014). Hereafter,
the focus will be laid on local and systemic responses induced
by a pathogen attack. Conserved microbial elicitors (PAMPs)
and more specific pathogen effectors are recognized by host
receptor proteins (PRR) present in the plasmamembrane of tree
cells and by-products of disease resistance genes (R genes)
present in the cytosol, respectively (Jones and Dangl 2006).
Several published studies on forest trees have focused on the
effector-triggered immunity (ETI) initiated by these R genes,
which leads to the hypersensitive response and a disease-free
phenotype at whole-plant level (Rinaldi et al. 2007; Liu et al.
2013). Transcriptome analyses for the poplar–Melampsora in-
teraction have shown that the defense reaction is triggered by
specific signaling systems and includes the accumulation of
transcripts encoding pathogenesis-related proteins (PRs),
gluthathione S-transferases (GSTs), and a rust-induced secreted
protein (RISP) specific to Populus (Duplessis et al. 2009).

Several such qualitative resistances with oligogenic control
and a major impact on damage levels were genetically
mapped for different forest pathosystems soon after the devel-
opment of the first genetic maps: Pinus sp.–Cronartium sp.
(Wilcox et al. 1996), Eucalyptus–Puccinia (Junghans et al.
2004), and Poplar sp.–Melampsora sp. (Newcombe et al.
1996). R genes are frequently overcome by pathogen popula-
tions (Kinloch et al. 2004; Dowkiw et al. 2010). Forest tree
pathologists and breeders have, therefore, focused on the ge-
netic and molecular basis of quantitative resistance, which is
thought to be under more complex genetic control and to be
more durable. The results of many fine mapping, candidate
region sequencing, genome annotation, and transcriptional
studies have blurred the distinction between qualitative and
quantitative resistances: (i) major QTLs for quantitative resis-
tance can account for more than 40 % of the observed
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phenotypic variation in field or laboratory experiments (Jorge
et al. 2005; Freeman et al. 2008); (ii) in artificial inoculation
tests controlling for pathogen diversity, some major QTLs
display significant strain specificity, resembling that of R
genes (Dowkiw et al. 2010); (iii) qualitative resistance factors
from Populus deltoides and quantitative resistance factors
against leaf rust inherited from P. trichocarpa and Salix
viminalis have been fine-mapped to genomic regions rich in
R genes (Bresson et al. 2011; Samils et al. 2011); and (iv) the
difference in the timing of the activation of similar defense
responses between susceptibility and partial or full resistance
in the poplar–Melampsora interaction is consistent with the
signal conversion model described for Arabidopsis (Nimchuk
et al. 2003; Duplessis et al. 2009).

Mapping studies have revealed a major contribution of
both additive and non-additive (epistasis) genetic variation
to disease resistance, supporting the hypothesis of complex
interaction and possible successful clonal selection in which
all genetic effects can be readily captured (Jorge et al. 2005;
Alves et al. 2012). Thanks to association genetics, La Mantia
et al. (2013) identified five variants in orthologs of
Arabidopsis genes with known functions in plant defense each
accounting for smaller proportions of phenotypic variation for
leaf rust severity in P. trichocarpa.,

For tree–insect interactions, the availability of reference
genomes for Populus and Eucalyptus led to attention being
focused on comparative analyses of the PR protein-encoding
genes induced by different pathogens and insects in forest
trees (reviewed by Veluthakkal and Dasgupta 2010). Analyses
of the diversity of the nucleotide sequences encoding protease
inhibitors (PIs) in P. balsamifera and Populus tremula re-
vealed few signs of selection but differences in adaptive his-
tories both within a single species and between closely related
species (Neiman et al. 2009; Bernhardsson and Ingvarsson
2012).

In association with other omics studies, the completion of
several new tree genomes and of new pathogen and insect
genomes should contribute in the near future to the discovery
of processes underlying severe disturbances such as mountain
pine beetle attack involving different pine host species, a bark
beetle species, and a tree-killing fungus (http://www.
thetriaproject.ca/).

2.3.3 Trees are holobionts

Almost all plant tissues harbor microorganisms (Turner et al.
2013). Trees do not escape the rule (Hacquard and Schadt
2015) and can be considered as “superorganisms” or
holobionts (Margulis 1991). Over the past decade, high-
throughput sequencing technologies have unraveled the huge
diversity of microbial communities associated to trees and
forest ecosystems. Buée et al. (2009), Öpik et al. (2009), and
Jumpponen and Jones (2009) pioneered in this field by using

454 pyrosequencing of barcode regions to study fungal diver-
sity associated to forest soils, roots, and leaves, respectively.
They described these communities in unprecedented detail
because high-throughput sequencing technologies enable the
detection of non-cultivable microorganisms (Hibbett et al.
2009). They opened the way to numerous studies highlighting
variations in tree-associated microbial communities at various
spatial scales. For instance, a fine-scale study showed that
bacterial communities of oak rhizosphere differ from those
of the surrounding soil (Uroz et al. 2010). Less contrasted
results were obtained for fungal communities of beech rhizo-
sphere (Coince et al. 2013). Fine-scale studies were also con-
ducted for above-ground communities. For instance, Cordier
et al. (2012a) showedwithin-canopy variations in foliar fungal
communities of beech. Leff et al. (2015) obtained similar re-
sults in the case of bacterial communities associated to leaf
and bark of Gingko biloba trees. By opening the microbial
world to ecologists, the next-gen revolution also gave rise to
larger scale studies, aimed at assessing the influence of climate
and other global change components on tree-associated mi-
crobial communities. The analysis of beech-associated fungal
communities along elevation gradients suggested that the air
temperature is a major structuring factor of foliar communities
(Cordier et al. 2012b) but not of their below-ground counter-
parts (Coince et al. 2014). A comparison between urban and
non-urban stands revealed significant effects of anthropogenic
activities on foliar fungal communities of Quercus
macrocarpa (Jumpponen and Jones 2010). High-throughput
sequencing technologies have also fostered the study of the
relationship between the genetic variability of trees and the
variability of their microbial communities. There is now a
large body of evidence showing that microbial communities
are influenced by the genetic variability of host trees, both at
intra-specific (Redford et al. 2010; Cordier et al. 2012a; Bálint
et al. 2013) and inter-specific (Redford et al. 2010; Kembel
et al. 2014; Kembel and Mueller 2014) levels. A current chal-
lenge is to assess relative effects of tree genotype and envi-
ronment by using common-garden experiments (Bálint et al.
2015) and to decipher the genetic architecture of microbial
communities. Significant advances have been made recently
on this latter topic on the model plant A. thaliana. The use of
mutant lines and genome-wide association mapping revealed
that plant loci responsible for defense, cell wall integrity, and
cuticular wax composition influence the foliar microbiota
(Riesberg et al. 2013; Horton et al. 2014). Another challenge
is to go beyond the identification of the genes and environ-
mental factors structuring microbial communities, by elucidat-
ing the effects of these hyperdiverse communities on tree
growth, health, and reproduction. We are indeed far from a
proper understanding of the outcomes of the interactions be-
tween microorganisms and their host (Borer et al. 2013), even
for model tree species such as poplars (Hacquard and Schadt
2015). It is thus time to move from meta-barcoding
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approaches to meta-“omics” approaches enabling the identifi-
cation of gene transcripts, proteins, and metabolites expressed
by tree-associated microbial communities. Such functional
approaches are still rare for microbial communities associated
to plants and soils (Knief et al. 2012; Damon et al. 2012), and
deserve further investigation.

2.4 Molecular interactions

The completion and annotation of plant genome sequences
have revealed that the functions of most genes are still
unknown. As most proteins function in macromolecular
complexes, the identification of protein partners or other
molecular interactors (nucleic acids, carbohydrates, lipids,
etc.) is particularly relevant when assigning a function to
a given protein. Post-genomic high-throughput studies have
been carried out, to accelerate functional studies through
the identification of plant interactomes, i.e., the whole set
of molecular interactions in a given cell or tissue, including
both physical interactions between molecules and indirect
interactions between genes (genetic interactions). For exam-
ple, the first experimental Arabidopsis interactome (AI-1)
led to the identification of 2,700 proteins and 6,200 inter-
actions, generating hypotheses about the molecular func-
tions of several thousand unknown proteins (Braun et al.
2011). The molecular interactions identified can then be
displayed as networks. Depending on the underlying bio-
logical question and the data available, these networks may
illustrate transcriptional and post-transcriptional regulations
(transcription factor/DNA or miRNA/target gene interac-
tions), signal transduction pathways, or fluxes in metabolic
pathways. Most traits of interest are quantitative and, there-
fore, particularly suitable for modeling by network
approaches.

Both high-throughput experimental techniques and compu-
tational predictions are required to decipher the interactome.
Experimental data remain very scarce in the plant kingdom,
with the exception of the model plant Arabidopsis. Indeed,
several large-scale protein interaction studies have been car-
ried out with different experimental approaches, mostly based
on yeast two-hybrid (Y2H) screening with a cloned ORFeome
and tandem affinity purification/mass spectrometry (for a re-
view, see Braun et al. 2013). The Arabidopsis interactome was
further expanded by prediction methods based on statistical
learning methodology and/or the transfer of interaction anno-
tation based on homology with other species (human, yeast,
nematode, fruitfly) (De Bodt et al. 2009; Geisler-Lee et al.
2007; Lin et al. 2011). In tree species, no large-scale system-
atic study has yet been undertaken. However, for
P. trichocarpa, a dedicated biomass ORFeome was cloned
from 374 selected ORFs found to be more strongly expressed
in xylem tissues than in phloem and was used in a binary Y2H
or a Y2H cDNA library screening: interacting proteins were

found for 74 baits (http://xylome.vbi.vt.edu/index.html), but
further validation, with alternative methods like co-
immunoprecipitation or bimolecular fluorescence comple-
mentation, is required as Y2H is prone to artifacts. For
monolignol biosynthesis, a predictive kinetic metabolite-flux
model has been recently established for the 21 enzymes and
24metabolites of the pathway in P. trichocarpa differentiating
secondary xylem, based on both in vivo mass spectrometry
quantification of all the isoforms in the pathway and kinetic
parameters measured in vitro for functional recombinant pro-
teins (Wang et al. 2014b). Predictions derived from the model
were validated in transgenic poplars with altered monolignol
biosynthesis. For transcription factors, it is now possible to
identify DNA targets at the genome level, by combining the
immunoprecipitation of chromatin with NGS sequencing
(ChIP-SEQ), thus facilitating the construction of regulation
networks at the genome scale. The ChIP-SEQ technique has
been shown to be applicable on poplar cambial or xylem tis-
sues and will certainly provide informative data about gene
regulation networks in years to come (Li et al. 2014b). ChIP-
PCR was successfully used on poplar secondary xylem, to
validate potential DNA targets of secondary wall-associated
NAC domain 1 (SND1), a transcription factor controlling
wood formation (Lin et al. 2013). Predictive approaches have
proved highly successful for tree species. Rodgers-Melnick
et al. (2013) presented the first predicted interactome for P.
trichocarpa, generated by the computational prediction of
protein–protein interactions from primary sequence data only
(conserved protein domains and predicted subcellular locali-
zation as input features).

The deciphering of molecular interactions is still in its in-
fancy for tree species but will certainly increase in importance
in the near future. We must first establish the critical datasets
required, together with experimental evidence, to accelerate
the inference of gene function and the construction of gene
networks. Interactome data are not particularly straightfor-
ward to obtain, particularly for non-model species, but they
can also be coupled to transcriptomic data, for the generation
of informative biological networks. Biological network ap-
proaches have highlighted the existence of highly connected
proteins, called hubs: these proteins are of particular interest in
functional studies as they must play a key role in plant biolo-
gy. In addition, biological network modeling could be used to
predict the phenotypic changes resulting from changes to gene
expression, thereby accelerating hypothesis-driven research
for the development of new breeding applications, as already
described in the field of medical research (Hood et al. 2004).

2.5 Epigenomics in trees: a new dimension to phenotype
prediction in a changing environment

In addition to the genetic component, epigenetic variation is
now proposed to contribute to phenotypic plasticity, adaptive
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capacity, and evolutionary trajectories in both natural and cul-
tivated plant populations (Bossdorf et al. 2008; Nicotra et al.
2010). Indeed, genome sequencing and genotyping were ex-
pected to identify the genetic components of common traits, but
these approaches were not entirely successful, suggesting that
there must be other sources of the missing heritability (Maher
2008). Epigenetics is the study of meiotically or mitotically
heritable changes in gene function that do not result from
changes in DNA sequence (Allis et al. 2007). At the molecular
level, epigenetic phenomena are mediated by reversible marks,
such as DNAmethylation and histone modifications, including
methylation, acetylation, phosphorylation, and ubiquitination,
and by small RNAs that can alter regulatory states of genes or
genomic regions. The study of epigenetic patterns at the
genome-wide level is referred to as “epigenomics.” As for
spontaneous mutations in DNA, errors in the maintenance of
methylation state result in the accumulation of single methyla-
tion polymorphisms (SMPs) over an evolutionary timescale. If
the rates of SMP formation are orders of magnitude greater than
those of spontaneous mutations, changes in regional methyla-
tion levels occur at similar frequencies. The regions concerned,
which are known as differentially methylated regions (DMRs),
correspond to genomic regions with different methylation pro-
files in different samples (tissues, cells, individuals, or others).
DMRs are regarded as possible functional regions involved in
the regulation of gene transcription and could act as QTLepi in
natural populations, thereby constituting a measureable com-
ponent of the so-called missing heritability (Cortijo et al. 2014).
Epigenomic data have recently been reported in forest trees
(Bräutigam et al. 2013).

DNA methylation in trees was first evaluated by determin-
ing global DNA methylation percentages by HPLC or HPCE,
after the hydrolysis of DNA to generate nucleosides or nucle-
otides (Gentil and Maury 2007). Variations of global DNA
methylation have been reported in several tree species, in dif-
ferent populations with different origins, in various organs, at
different developmental stages, in different culture conditions,
and in response to several environmental constraints, such as
water availability and temperature (Hasbún et al. 2008;
Monteuuis et al. 2009; Gourcilleau et al. 2010; Mankessi
et al. 2011; Teyssier et al. 2014). However, it was not possible
to identify the genomic context of these variations in these
analyses. In recent years, epigenomics has emerged in parallel
to the development of next-generation sequencing (NGS)
techniques, genomic resources, and associated bioinformatics
and biostatistics packages, together with the use of specific
methods to identify DNA methylation marks. Three main
methods for detecting DNA methylation at the genome-wide
level have been applied to trees (Mensaert et al. 2014;
Rodriguez et al. 2012; ESM_4.doc, ESM_5.doc): (1)
methylation-sensitive amplification polymorphism (MSAP),
(2) methylated DNA immunoprecipitation (MeDIP), and (3)
whole-genome bisulfite sequencing (WGBS).

MSAP revealed DNAmethylation polymorphism in differ-
ent families of trees, between individuals/populations, in re-
sponse to environmental changes, and during in vitro culture
(ESM_4.doc). MeDIP and WGBS have been used to identify
thousands of DMRs at the genome-wide level but only in
Populus, the first tree to be sequenced (Tuskan et al. 2006).
These epigenomic studies have significantly advanced our
knowledge of structural and functional aspects of genomics.
Indeed, determination of the poplar methylome revealed fea-
tures particular to this tree, such as a higher CHG methylation
level than reported for other plants (Feng et al. 2010) and low
levels of methylation at DNA recombination hotspots (Slavov
et al. 2012). Furthermore, gene-body DNA methylation is
extensive in the open chromatin state, linked to structural gene
characteristics (gene size and copy number) and correlated
with tissue-specific gene expression (Vining et al. 2012;
Lafon-Placette et al. 2013; Vining et al. 2013). DNA methyl-
ation is also involved in regulating stress response genes
(Liang et al. 2014; Maury and Lafon-Placette, unpublished
data). In addition, the methylation patterns of the parents are
partially and dynamically passed onto their hybrid offspring
(Gao et al. 2014). Finally, the first hypomethylated poplar
trees (ESM_4.doc; Zhu et al. 2013a) were obtained by using
a RNAi strategy to silence the DDM1 gene, the product of
which mediates the methylation of transposable elements
and genes. These mutants represent an interesting model for
investigating the role of DNAmethylation under conditions of
environmental variation. Insights into epigenomics will im-
prove our understanding of adaptive tree responses to fluctu-
ations in the environment, particularly in a context of global
climate change.

2.6 Ecological genomics: genomic answers to ecological
questions

Ever since Darwin (1859) and Ford (1964), the question of the
heritable basis of adaptation to environmental conditions has
been a fundamental issue in population genetics and ecology.
Environmental parameters vary continually over space and
time, so “adaptation” is intrinsically “local.” Forest trees have
large, often continuous populations and long life cycles. The
question of how they adapt to changing environmental condi-
tions is thus of considerable fundamental importance in addi-
tion to having implications for forest management. Genomics
constitutes a powerful approach for obtaining answers to long-
standing ecological questions, by shedding light on the role of
selection in shaping patterns of genetic diversity and identify-
ing environmental drivers of selection, in particular.

The power of genomics in forestry has already been de-
scribed by González-Martínez et al. (2006). The relative du-
rability of tree stands makes it possible to associate ecological
variables with genotype frequency patterns in a reliable man-
ner (Sork et al. 2013). Genomic methods can then be used to
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screen large numbers of loci for association with environmen-
tal parameters. This approach has led to the identification of
polymorphisms associated with environmental gradients at
the regional scale in P. taeda (Eckert et al. 2010) and
at the local scale (Jump et al. 2006; Csilléry et al. 2014) in
Fagus sylvatica. Additional studies are underway in several
species (Pinus halepensis, Eperua falcata, P. pinaster,
Symphonia globulifera, etc.); preliminary results for candidate
loci and traits have already demonstrated signatures of
microgeographic adaptation in E. falcata (Audigeos et al.
2013; Brousseau et al. 2013) and P. halepensis (Hernandez-
Serrano et al. 2013). Generally speaking, two kinds of ap-
proach have been applied to data analysis, depending on the
nature of the information about the structure of environmental
variation. In cases in which variation is considered to be
continuous, the methods applied are mostly based on regres-
sion between environmental variables and allele frequencies
(e.g., SAM; Joost et al. 2007). By contrast, in cases in which
environmental variation is considered to be discrete (or is
discretized during data collection, e.g., by sampling at differ-
ent positions along a continuous gradient), the preferred
methods are those based on the detection of divergence out-
liers (e.g., Beaumont and Balding 2004). However, it should
be noted that the consideration of environmental variation as
continuous or discrete often depends on the experimental de-
sign and constraints. With the exception of particular cases, in
which one or more environmental variables change abruptly
over space (e.g., over a cliff), or in which the patches available
for tree growth are themselves discontinuous (e.g., on islands),
environmental variation is generally continuous. This raises
the question of a further merger, between ecological genetics
(or genomics) and landscape genetics (or genomics). Depend-
ing on the extent to which ecological contrasts give rise to
continuous patterns, there are good reasons for treating dis-
persal, migration, and adaptation as a unified process (Sork
et al. 2013; Schoville et al. 2012).

Most early population genomic studies on forest trees fo-
cused on a limited number of polymorphisms of a few candi-
date genes. However, more realistic mechanisms of evolution-
ary change, such as polygenic and epistatic selection, must be
considered in selection tests. To this end, population genomics
will benefit from the ongoing development of pan-genomic
approaches.

2.7 Integrating genomics into phylogeography
and phylogeny

The phylogenetic relationships between species, the delimita-
tion of closely related species, and the genetic structure of
populations within species provide key information for
decision-making in the conservation and sustainable use of
forest tree germplasm. Early genetic studies on isozymes or
plastid DNA revealed major footprints of past range dynamics

in temperate trees (e.g., Petit et al. 2003), which found appli-
cations in genetic provenance discrimination of forest repro-
ductive material. Plastid DNA markers were also applied for
species delimitation in trees (Kress and Erickson 2008); how-
ever, their power remained limited because of weak reproduc-
tive barriers and frequent interspecific gene flow in trees (Petit
and Hampe 2006). In the last decade, the increased use of
multiple nuclear genetic markers and high-throughput geno-
mics has made it possible to provide more precise information
on past population history, more efficient delimitation of spe-
cies, and inference of phylogenetic relationships between
them and to characterize adaptive evolution at the molecular
level in forest trees. This revolution in genetic markers has
been accompanied by major transitions in data analysis, nota-
bly a shift from descriptive to hypothesis testing approaches,
yielding valuable information for a more informed manage-
ment of forest genetic resources.

In the last decade, phylogeographic studies have increas-
ingly used multiple unlinked nuclear loci in combination with
population genetic models using coalescent theory (Nielsen
and Beaumont 2009). This has allowed discriminating be-
tween alternative scenarios of population genetic history with-
in species and in closely related species (Heuertz et al. 2006;
Gao et al. 2012; Cornille et al. 2013) and has permitted a
reliable estimation of population genetic parameters, such as
divergence times between lineages (Budde et al. 2013;
Couvreur et al. 2008; Morris et al. 2008; Scotti-Saintagne
et al. 2013a; Scotti-Saintagne et al. 2013b). The inferred de-
mographic history has been used as a robust baseline informa-
tion to detect gene loci under adaptive evolution (Grivet et al.
2011; Källman et al. 2014). Comparative phylogeographic
approaches have given insights into the congruence of demo-
graphic history across species through time, first in temperate
tree species (e.g., Jaramillo-Correa et al. 2010; Petit et al.
2003) and more recently in tropical species (Dauby et al.
2014; Heuertz et al. 2014; Jones et al. 2013; van der Merwe
et al. 2014). Important predictive power has been gained in
phylogeography by integrating species distribution modeling
based on spatially interpolated climatic data for different time
periods (Carstens and Richards 2007; Cornille et al. 2013).
Significant advances in phylogeography could further come
from new disciplines, such as “geogenomics,”which involves
the use of large-scale genetic data to constrain geological hy-
potheses (Baker et al. 2014).

Applications of massively parallel high-throughput se-
quencing (HTS) have emerged in recent years, facilitating
cost-effective marker development (McPherson et al. 2013;
Micheneau et al. 2011; Slavov et al. 2012). HTS technologies
hold great promise for disentangling evolutionary relation-
ships in complex groups, especially in tropical tree taxa in
which botanical knowledge remains limited and cryptic spe-
cies are common (Heuertz et al. 2014; Turchetto-Zolet et al.
2013). The first HTS studies reconstructed the complete
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organellar genomes of tree taxa, which resulted in a higher
resolution in phylogeography (McPherson et al. 2013; van
der Merwe et al. 2014), taxonomy, and phylogenetics, partic-
ularly for tropical taxa (in Chrysobalanacae, Malé et al. 2014;
in Malpighiales, Xi et al. 2012). HTS studies of the nuclear
genome are still rare in phylogenetics and phylogeography of
trees (but see Carstens et al. 2013; Stölting et al. 2013). They
require the cost-effective parallel sequencing of hundreds or
thousands of homologous DNA regions across hundreds of
individuals, using appropriate technology for the targeted phy-
logenetic depth. Genome reduction methods involving enzy-
matic digestion are suitable at the within-species level (e.g.,
Stölting et al. 2013), whereas sequence capture for conserved
nuclear regions is recommended for phylogenomics
(reviewed in McCormack et al. 2013).

In phylogenomics, new Bayesian methods make it possible
to infer phylogenetic relationships from multilocus nuclear
data while accounting for intraspecies polymorphism and in-
complete lineage sorting (Heled and Drummond 2010). In
addition, Bayesian dating methods that incorporate uncertain-
ty in evolutionary rate variation alongside time constraints
based on fossils hold promise to improve dating (Dos Reis
et al. 2012).

The characterization of genetic boundaries between closely
related species remains challenging when reproductive bar-
riers are incomplete. Interspecific gene flow can have impor-
tant evolutionary consequences, such as the rapid introgres-
sion of beneficial variants (Morjan and Rieseberg 2004). This
facilitates adaptation from standing genetic variation, which is
particularly relevant during rapid range expansion (Keller
et al. 2010; Lascoux and Petit 2010). Bayesian clustering al-
gorithms (reviewed in François and Durand 2010) have
proved useful for tree species delimitation (Duminil et al.
2012; Guichoux et al. 2013). However, population sampling
must account for the presence of gene flow by including evo-
lutionarily important areas, such as secondary contact zones or
hybrid zones (Eckert et al. 2008; Scotti-Saintagne et al.
2013a).

Finally, phylogeographic and ecological genetics studies
will undoubtedly become more integrated in the future. His-
torical inference is important not only for an understanding of
the evolutionary past of a particular species or ecological com-
munity but also as a prerequisite to test for selection on se-
quence data (Carstens et al. 2013; Källman et al. 2014) and
analyses of phenotypic evolution in different populations
(Keir et al. 2011; Stone et al. 2011).

2.8 Genotype–phenotype association

Unraveling the genetic architecture of traits of economic or
ecological importance, which are usually quantitative, is cru-
cial for forest tree improvement and management. This can be
achieved by identifying and localizing the genomic regions

controlling the variation of quantitative traits (QTLs). Large-
effect QTLs could theoretically be used in marker-assisted
breeding schemes, but this approach has not yet been used
in forest trees (Muranty et al. 2014), mostly because the most
relevant traits for forest tree breeding are highly complex and
probably controlled bymany small-effect QTLs. Furthermore,
most of the QTLs detected have large confidence intervals and
have not been validated. Consequently, the identification of
causal molecular polymorphisms controlling quantitative
traits remains a great challenge that must be met before such
information can be effectively transferred to breeding pro-
grams (ESM_6.pdf).

Since the first QTL mapping experiment in forest trees in
the 1990s (Bradshaw and Stettler 1995), the techniques used
to identify QTLs have changed radically. The advent of geno-
mics and the democratization of sequencing due to NGS have
generated thousands of single nucleotide polymorphism
(SNPs) for genetic mapping, a prerequisite for QTL identifi-
cation in controlled crosses. As a result, the number of
markers on genetic maps has greatly increased, from a few
hundred to several thousand, thanks to the extensive use of
SNP arrays in many species (e.g., Chancerel et al. 2013) and,
more recently, the direct use of sequencing for genotyping
(Neves et al. 2014). Nevertheless, in order to improve the
resolution of the QTLs mapped, it is necessary that the in-
crease in the number of molecular markers is accompanied
by an increase in the number of recombination events within
the population studied, which can be achieved by increasing
its size. This approach has been successfully used for the fine
mapping of a major QTL for rust resistance in poplar (Bresson
et al. 2011), but it remains time-consuming and expensive.

Association mapping (also known as linkage disequilibri-
um or LD mapping), which involves the detection of QTLs in
more complex populations, offers an attractive alternative to
the fine-mapping of QTLs in forest trees (Neale and Kremer
2011). Indeed, most forest trees are outcrossing species and
this, together with their almost undomesticated status, implies
a rapid decay of LD, making it possible to detect polymor-
phisms in the close physical vicinity of the causal variants or
even the functional variants themselves. As a result, such ap-
proaches have become very popular in forest trees over the last
decade, and many associations have been reported. However,
despite the great promise of association mapping, most of the
associations reported to date have accounted for only a very
small proportion of the genetic variation, and this has greatly
hindered their use in breeding programs. An obvious expla-
nation for such disappointing results is that association studies
in forest trees have not yet exhaustively screened the entire
genome, as they have focused only on candidate genes and/or
regions. Here again, the advent of NGS opens up new possi-
bilities of screening for almost all SNPs within the gene space
or even within the entire genome, resulting in an exhaustive
genome-wide scan (Evans et al. 2014). Moreover, sequencing
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approaches will enable a genome-wide discovery and typing
of structural variation (presence/absence and copy number
variants), with effects on quantitative traits that remain largely
unexplored (Muchero et al. 2014).

Another way of gaining insight into the genetic determin-
ism of complex traits is the genetic analysis of intermediate
non-organismal phenotypes, such as transcriptomic, proteo-
mic, or metabolomic data. Such systems biology approaches
are appealing for highly complex traits, as they provide an
intermediate step between the genotype and the phenotype,
thereby facilitating the deciphering of genetic architecture
for such traits. Only a few such studies have been carried
out for forest trees, and these studies mostly involved QTL
mapping for mRNA data obtained with microarrays (Kirst
et al. 2005; Drost et al. 2010). With the advent of “omics”
approaches, systems biology studies should and will undoubt-
edly become more widespread for forest trees in the near fu-
ture. They will allow the detection of expression, protein, and
metabolite QTLs and the construction of gene networks,
which, together with genome-wide variation data, may make
it possible to move from associations to causal links, through
dedicated statistical modeling (Marjoram et al. 2014).

2.9 Conservation genomics

The science of conservation genomics is directly derived from
conservation genetics, i.e., the use of genetic methods for un-
derstanding the impact of habitat modification on genetic
structures and fitness and designing conservation strategies
in practice, particularly in rare and endangered populations
and species. Because quantitative genetic methods were com-
plex and costly to implement, conservation genetics mostly
focused on the use of molecular markers to decipher the de-
mographic history of taxa and their phylogeography, thereby
identifying groups of populations to be given priority for con-
servation efforts (see the concepts of ESU, evolutionary sig-
nificant unit, as defined by Moritz 1994, and MU, manage-
ment unit, as defined by Palsbøll et al. 2007).

Conservation schemes based on genetic methods have al-
ways recognized that neutral markers told only part of the
evolutionary story (albeit an important one) and that access
to parts of the genome undergoing selection was crucial. Be-
fore genomic tools became available, this was best achieved
by comparing phenotypes of at least partly known ancestry in
controlled environments (common gardens and reciprocal
transplants). However, more frequently, environmental surro-
gates were used, to indicate the potential existence of natural
selection. If both phenotypic or environmental divergence and
neutral genetic or phylogeographic structure were found, such
distinct populations were considered to be of high conserva-
tion priority (Lesica and Allendorf 1995; Allendorf et al.
2013). The European networks for the conservation of forest

genetic resources are based on these strategies (Koskela et al.
2013; Lefevre et al. 2013).

With advances in genomics, and increasing access to many
genes and potentially complete genome sequences for trees, it
is becoming increasingly possible to compare surrogate phe-
notypic and ecological information with genetic information.
Genomics is making it possible to revise our approach to
conservation science and conservation strategies. In some
cases, the change is just a question of degree, such as the much
larger number of markers available now than in the past, mak-
ing effective size and demographic estimates more precise. In
other cases, the change is revolutionary, as, for example, for
the comparison of DNA sequences responding to demography
with those responding to selection (potentially in different
ways, depending on the location of the populations within
the ecological niche of the species) and for predicting the
ability of populations to adapt to environmental changes and
new patterns and thresholds of ecological disturbances
(Allendorf et al. 2010). Even over short spatial scales (such
as a single mountain), genomic studies have demonstrated the
existence of local adaptation and significant differentiation for
genes involved in key adaptive traits (phenology and resis-
tance to drought and cold), of clear utility for the design of
conservation strategies (Lalagüe et al. 2014).

There have been many calls for the use of genomic data for
conservation purposes in forest trees (e.g., González-Martínez
et al. 2006). However, few examples of the practical use of
genomic data for strengthening conservation networks are
available for forest trees as of yet, although many studies have
demonstrated or confirmed that some populations or particular
regions deserve protection. In Pinus sylvestris for example,
genomic data from a relatively small number of adaptive
genes have confirmed the high level of differentiation and
unusual evolutionary history of populations from Scotland
(Wachowiak et al. 2011). In P. trichocarpa, an extensive ge-
nome scan revealed previously unnoticed small- and large-
scale geographic differentiation patterns in western North
America (Slavov et al. 2012). As genome scan techniques
are becoming cheaper and are now technically affordable for
many different laboratories, they will undoubtedly soon be
widely used for characterizing the evolutionary ecology and
history of forest tree species, finally making it possible to
include both demographic and adaptive processes in the de-
sign of conservation networks and to prioritize conservation
actions. However, this era has yet to arrive.

2.10 Genomics and breeding

Most forest tree breeding programs were launched in the
1950s and have focused on species with relatively short rota-
tion periods, either conifers (pine, spruce, larch, Douglas fir,
etc.) or broadleaf trees (eucalyptus, poplar, wild cherry, syca-
more, etc.). Considerable genetic gains have been achieved for
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the economic and adaptive traits of most of these species
(reviewed by Pâques 2013), despite the inherent difficulties
involved in the breeding of these large, long-lived organisms.
Given their key ecological and economic roles, forest trees
have also been the object of rapid developments in genetic
and association mapping for QTL discovery in the last
20 years (see Section 2.8). Despite these parallel develop-
ments in breeding and QTL mapping, few breakthrough ap-
plications for forest trees using a synergistic combination of
these two approaches have been reported. This situation was
quantitatively assessed and discussed in a review work by
Muranty et al. (2014), which focused particularly on marker-
assisted selection. Indeed, forest trees are among the geneti-
cally improved species most likely to benefit from the use of
gene- or marker-based information in breeding. Indeed, reduc-
ing the long generation intervals of forest tree breeding pro-
grams by early marker-based evaluation is the most evident
benefit, with other benefits including the limitation of pheno-
typing costs, an increase in the precision of evaluation of
difficult traits (wood properties, phenology, biotic and abiotic
responses to stresses, see previous sections), and the explicit
management of genetic diversity. The large levels of polymor-
phism often harbored by forest tree species and their complex
genomes have undoubtedly been limiting factors preventing
the accumulation of genomic resources to the point required
for the revolutionization of breeding programs (see Sec-
tion 2.1). However, a number of initiatives worldwide are
dealing with this issue, including dedicated European
( r e v i ew e d i n h t t p : / / www. f o r e s t r y. g o v. u k / f r /
euframeworkprojects) and North American (American
Conifer Translational Genomics Network: https://dendrome.
ucdavis.edu/ctgn/, SMarTForests: http://www.smartforests.
ca/) projects.

A number of marker-based applications are paving the way
for genomics-assisted breeding. Some of the simplest, in terms
of marker requirements, do not require modifications to
existing breeding programs and concern the management of
breeding populations through fingerprinting (identity and ped-
igree checking, genetic diversity estimation) and the optimi-
zation of genetic gain deployment (seed quality control). Oth-
er applications have low requirements for genomic resources
but potentially large impacts on existing breeding programs.
These applications aim to minimize the uncertainties in the
assessment of relatedness in pedigree-based genetic evalua-
tions, through the use of marker-based estimates, and to im-
prove precision. Markers can be used to recover full parentage
in open or polymix mating regimes (El Kassaby and Lstiburek
2009), thereby increasing the precision of evaluations without
the need for a costly control-cross regime. This strategy is
currently being evaluated in several breeding programs, for
Scots pine in Sweden (Rosvall 2011) and maritime pine in
France (Bouffier et al. in preparation). In a more general ap-
proach known as G-BLUP, a marker-based relationshipmatrix

is used alone or together with one from a pedigree, in the
statistical mixed model for genetic evaluation. This approach
can finely capture relatedness at within-family levels, thereby
increasing the precision of evaluations.

Ultimately, the achievement of sufficiently high levels of
genome coverage by dense genotyping or sequencing pro-
vides not only highly precise relatedness estimates but also
information about any relevant genetic variation from under-
lying causal mutations. This is the principle behind genomic
selection (GS, Meuwissen et al. 2001), which paves the way
for the early evaluation of genotyped candidates without phe-
notype data. Simulation studies (Grattapaglia and Resende
2011, Iwata et al. 2011; Denis and Bouvet 2013) have already
demonstrated the potential of GS for forest trees in diverse
breeding and genetic scenarios. These theoretical studies have
been complemented by the first empirical studies in forest
trees (Zapata-Valenzuela et al. 2012; Zapata-Valenzuela et al.
2013; Resende et al. 2012a; Resende et al. 2012b), which have
yielded medium- to high-level accuracies, even with limited
numbers of markers (less than 5,000 SNPs). However, these
preliminary results must be interpreted with caution, as they
relate to populations with small effective sizes and thus favor-
ably high linkage disequilibrium levels. In large populations,
such as those in most forest tree breeding populations, GS
may be less accurate, given the marker density currently at-
tainable in these species (Beaulieu et al. 2014). Nevertheless,
GS is clearly an alternative for the forest tree breeding pro-
grams of tomorrow.

3 Conclusion and perspectives

The sections above clearly illustrate how, in the 10 years
since the DNA sequence of the poplar genome was made
publicly available, the forest tree genomics community has
fully embraced the rapidly evolving tools of genomics and
bioinformatics (i) to study the genetic and molecular chang-
es underlying the complex developmental traits characteristic
of the biology of woody perennials, (ii) to determine how
the information encoded in the genome of individual trees
responds to external cues and to identify the evolutionary
forces responsible for shaping the phenotypic variation we
see at both the population and species levels in natural con-
ditions, and (iii) to identify the causal genetic polymor-
phisms underlying phenotypic differences. By harnessing
the power of genomics, this community has shown that it
is committed to applying this knowledge in management
practices, conservation, and breeding programs, to help nat-
ural and planted forests adapt to the rapid pace of current
and projected climate changes. It is difficult to see where
events will take us in the next 10 years, given the currently
exponential increase in the amount of DNA sequence data,
likely decreases in the cost of sequencing, and the
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emergence of new technologies. This research community
has matured, but its sustainable development will require
the mobilization of adequate funding and human resources,
improvements to international collaboration to address glob-
al challenges, and integration with other disciplines.

3.1 What is to come in the next 10 years?

Over the next decade, we will undoubtedly continue to see
an accumulation of genomic resources (including reference
genome and epigenome sequences) and basic understand-
ing about genome structure and evolution, the distribution
of gene, non-protein-coding transcribed fragments, and
transposable elements across the genome and their interac-
tions. The sequencing of large heterozygous tree genomes
remains challenging, and work is still in the exploratory
phase for most such genomes (e.g., chestnut and oak) or
requires refinement (e.g., conifers) with new sequencing
technologies and bioinformatic approaches (Faino and
Thomma 2014). However, the recent results obtained in
this area are more than encouraging and open the way for
the resequencing of thousands of genotypes, a prerequisite
for the description of sequence variation within and be-
tween species, the identification of causal variants under-
lying phenotypes of interest, and the provision of knowl-
edge about the evolutionary history of tree populations.
Beyond the apparent completeness of genome sequence
information, much remains to be done concerning our un-
derstanding of gene regulation. Multidisciplinary groups
are required to make use of this wealth of resources to
derive fundamental insights into the biology of woody pe-
rennials through the integration of “omics” technologies
into research activities. MicroRNAs constitute a specific
class of noncoding molecules worthy of attention, given
their fundamental biological role. Clearly, the next 10 years
will see improvements in descriptions of the number and
biological role of these RNAs, particularly as concerns
tree-specific features. Moreover, systems biology, by pro-
viding a holistic approach, may help to uncover the molec-
ular players, their complex networks of interaction and key
hubs underpinning developmental processes, and re-
sponses to external disturbances. Advances in genomic
technologies, statistical, mathematical, and computational
methods are very promising and should enable us to meet
this challenge. RNA interference-based screening and gene
tagging approaches are still underdeveloped for forest trees
but will probably be instrumental in achieving these ends.
However, the logistic complexities associated with high-
throughput screening in such large organisms may hamper
the development of this area of research. Another field that
will undoubtedly change our view on how trees develop,
grow, and adapt throughout their extended life span is that
of epigenetics. Reversible epigenetic marks contribute to

phenotypic plasticity and, therefore, constitute an essential
factor in the adaptive capacity of these long-lived organ-
isms. This is clearly a hot topic in the framework of rapid
climate change. Moreover, as epigenetic marks may differ
between genotypes and may be heritable, a fraction of phe-
notypic variation shaped by epigenetic mechanisms may
potentially be targeted by natural selection and, therefore,
contribute to the evolutionary trajectory of populations.
Clearly, assessing the relative contributions of epigenetic
modifications and changes in allele frequency (the “classi-
cal” mechanism of adaptation operating at the population
level) will be a major challenge in the coming years. Final-
ly, two other research areas should benefit from the discov-
ery of gene regulatory networks underlying trait variation.
The hunt for the so-called missing heritability (proportion
of phenotypic variance unaccounted for by single nucleo-
tide polymorphisms) is one of these areas (Maher 2008).
Understanding the nature of genetic adaptation to environ-
mental heterogeneity over space and time is the other.

3.2 Will genomics change the landscape of forest tree
breeding?

Proofs-of-concept of genomic prediction in forest trees
have been obtained and show that this technology should
work (i.e., it should improve estimated breeding value
accuracy and, therefore, result in a genetic gain per unit
time), and the genomic revolution holds great promise for
economic benefit in the forest industry. However, further
research is required to confirm that this technology could
be readily implemented. We can see at least three comple-
mentary actions that could potentially favor a rapid and
efficient implementation of genomic selection in the next
decade. One is the construction of consensus reference
populations for each species across countries, with shared
efforts for the required phenotypic evaluation. Another
action is the rational implementation of genotyping, nota-
bly through the use of different marker coverages at dif-
ferent population levels and of imputation for equaling
density coverages. Useful lessons can be learned from
existing success stories (as in dairy cattle and pig breed-
ing), but the economic viability of incorporating genome-
enabled selection into forest tree breeding programs re-
mains to be demonstrated. Thus, a third action will be
the demonstration that the magnitude of the estimated
breeding value accuracy improvement will be large
enough to counterbalance the genotyping/sequencing
costs. The next decade will certainly see an accumulation
of proof-of-concept studies but, more importantly, re-
searchers and breeders will have to work together to dem-
onstrate the economic viability of this methodology be-
fore its implementation.
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